Sansalone Named ASM Interim Executive Director

WASHINGTON, DC – December 3, 2014 - Nancy A. Sansalone, MPA has been named Interim Executive Director of the American Society for Microbiology (ASM) effective January 1, 2015.  She steps in for Michael Goldberg, who is retiring at the end of 2014 after 30 years of stellar leadership. She has been asked by the ASM Officers to lead the staff, to steward the operations and finances and to prepare the organization for change while the Society conducts an international search for a permanent Executive Director/CEO. The search is expected to begin in January 2015.

Sansalone joined ASM in 2010 as the Deputy Executive Director. In this role, she provides leadership and management expertise to the board leadership and staff to ensure the fulfillment of the Society’s mission and strategic plan and provides leadership direction for the Society’s operational, programmatic and business activities. 

Sansalone has spent her entire career in association management and higher education administration. Prior to joining ASM, she served as the CFO and Chief Operating Officer at the Special Libraries Association (SLA) and Vice President and CFO of the American Association for Higher Education (AAHE). Previously, Sansalone worked for 10 years with the Council of Graduate Schools (CGS), serving as Vice President for Finance and Administration and Treasurer for the Council’s Board of Directors.

She also has served as a volunteer leader on numerous non-profit boards such as the National Association for Women in Education where she served as the elected President, the Washington Higher Education Secretariat Metropolitan Employer Trust as an Advisory Board member, Capital Association for Women in Education as President, National Conference for College Women Student leaders as Chair, National Center for Higher Education Meeting Professionals as Chair, American Society for Association Executives as a member of the Finance and Administration Advisory Board and as a member of the ERIC Clearing House on Higher Education Coordinating Board. She also has held administrative posts at both Harvard University working with international programs at the Kennedy School of Government and Northeastern University in the Cooperative Education Division.

Sansalone is a graduate of Northeastern University with a Master’s Degree in Public Administration and a Bachelors of Science Degree in Political Science and Public Administration. She completed work at Harvard University in their advanced graduate study in management program.

She lives in Arlington, Virginia with her spouse Jim and their four dogs.

Salivary Mucins Play Active Role to Fight Cavities

WASHINGTON, DC - NOVEMBER 11, 2014 -- Salivary mucins, key components of mucus, actively protect the teeth from the cariogenic bacterium, Streptococcus mutans, according to research published ahead of print in Applied and Environmental Microbiology. The research suggests that bolstering native defenses might be a better way to fight dental caries than relying on exogenous materials, such as sealants and fluoride treatment, says first author Erica Shapiro Frenkel, of Harvard University, Cambridge, MA.

S. mutans attaches to teeth using sticky polymers that it produces, eventually forming a biofilm, a protected surface-associated bacterial community that is encased in secreted materials, says Frenkel. As S. mutans grows in the biofilm, it produces organic acids as metabolic byproducts that dissolve tooth enamel, which is the direct cause of cavities. “We focused on the effect of the salivary mucin, MUC5B on S. mutans attachment and biofilm formation because these are two key steps necessary for cavities to form,” says Frenkel.

“We found that salivary mucins don’t alter S. mutans’ growth or lead to bacterial killing over 24 hours,” says Frenkel. “Instead, they limit biofilm formation by keeping S.mutans suspended in the liquid medium. This is particularly significant for S. mutans because it only causes cavities when it is attached, or in a biofilm on the tooth’s surface.” She adds that the oral microbiome is better preserved when naturally occurring species aren’t killed. “The ideal situation is to simply attenuate bacterial virulence,” she says.

The study grew out of previous work in the investigators’ laboratory showing that other types of mucins, such as porcine gastric mucins, had protective effects against common lung pathogens, says Frenkel. With this in mind, they suspected that salivary mucins would play a protective role, but they were not sure what that would be.

“Defects in mucin production have been linked to common diseases such as asthma, cystic fibrosis, and ulcerative colitis,” says Frenkel. “There is increasing evidence that mucins aren’t just part of the mucus for structure or physical protection, but that they play an active role in protecting the host from pathogens and maintaining a healthy microbial environment. We wanted to apply these emerging ideas to a disease model that is a widespread, global public health problem—cavities. We chose to study the interaction of MUC5B with Streptococcus mutans because it is the primary cavity-causing bacteria in the oral cavity.”

The research makes a fundamental contribution to scientific understanding of host-microbe interactions, says principal investigator Katharina Ribbeck, of the Massachusetts Institute of Technology, Cambridge MA. “It is generating a paradigm shift from the textbook view of mucus as a simple catchall filter for particles, towards the understanding that mucus is a sophisticated bioactive material with powerful abilities to manipulate microbial behavior.”

Zoos Exonerated in Baby Elephant Deaths; Data Support New Branch of Herpesvirus Family

WASHINGTON, DC – October 8, 2014 - Elephants are among the most intelligent non-humans, arguably on par with chimps, but both African and Asian elephants—separate species—are endangered. In 1995, 16-month old Kumari, the first Asian elephant born at the National Zoo in Washington, DC, died of a then-mysterious illness. In 1999, Gary Hayward of Johns Hopkins University and collaborators published their results identifying a novel herpesvirus, EEHV1 as the cause of Kumari’s sudden death. They now show that severe cases like this one are caused by viruses that normally infect the species, rather than by viruses that have jumped from African elephants, which was their original hypothesis. Hayward’s latest research appears ahead of print in two concurrently published papers in the Journal of Virology.

At the time of Kumari’s death, anti-zoo activists seized on the situation to call for abandoning all efforts to breed Asian elephants in zoos, as they claimed that zoos were spreading the deadly herpesvirus, says Hayward. Contrary to that, in the current research, “We showed that whereas some identical herpesvirus strains infected both healthy and diseased animals concurrently at particular facilities, the majority were different strains, and there has not been a single proven case of the same strain occurring at any two different facilities,” says Hayward. “Therefore, the viruses have not spread between zoos, and the sources of the viruses were most likely wild-born elephant herdmates. In fact, we also found the same disease in several Asian range countries, including in orphans and wild calves, and showed that the EEHV1 strains in India displayed the same genetic diversity as those in Western zoos.”

The papers also provide substantial data to support the hypothesis that the EEHV collectively represent a new, fourth major branch of the herpesvirus family, the proposed deltaherpesvirus subfamily (Deltaherpesvirinae), says Philip Pellett of Wayne State University, Detroit, who wrote an invited Commentary which accompanied Hayward’s papers. “Given that the three other branches were recognized over 30 years ago, establishment of a new subfamily would a big deal.”

Pellett adds that “Further scientific significance arises from the discovery of 12 new herpesviruses and identification of some new wrinkles in our understanding of herpesvirus diversity and evolution.”

In these studies, the investigators performed extensive DNA fingerprinting of the genetic signatures of all the known EEHV cases, as well as samples of EEHV virus that were obtained from wild Asian and African elephants, says Hayward. In the process, they identified seven different species of EEHVs and multiple different chimeric subtypes and strains of each.

“Because these viruses cannot be grown in cell culture, we had to develop sensitive and specific PCR techniques to be able to identify and compare the sequences of multiple segments of many different types of EEHV genomes directly from pathological blood and tissue DNA samples,” says Hayward. “Later, by also examining benign lung nodules from culled wild African elephants, we determined that EEHV2, EEHV3, EEHV6, and EEHV7 are natural endogenous viruses of African elephants, whereas EEHV1A, EEHV1B, EEHV4, and EEHV5 are apparently natural and nearly ubiquitous infections of Asian elephants that are occasionally shed in trunk washes and saliva of most healthy asymptomatic adult animals.”

Hayward notes that only one example of a lethal cross-species infection with EEHV3 into an Asian elephant calf has been observed, and that the viruses causing disease normally do so only in their natural hosts.

Close monitoring of Asian elephant calves in zoos has so far enabled life-saving treatment for at least nine infected Asian calves, says Hayward, suggesting that such monitoring may ultimately enable determining why some animals become susceptible to severe disease after their primary EEHV1 infections, while most do not. “About 20% of all Asian elephant calves are susceptible to hemorrhagic disease, whereas symptomatic disease is extremely rare in African elephant calves under the same zoo conditions,” says Hayward.

In another paper in the same issue of Journal of Virology, Hayward et al. demonstrate that the many highly diverged species and subtypes of EEHVs are ancient viruses that evolved separately from all other known subfamilies of mammalian herpesviruses within the ancestor of modern elephants, beginning about 100 million years ago.

Philip Pellett, of Wayne State University School of Medicine, Detroit, praises both of Hayward’s studies in this issue of the Journal of Virology: “The information gained in the new EEHV papers will be important for developing diagnostic tools for these viruses, and for developing therapeutic approaches to diseases caused by EEHV.”

Elephant populations have been plummeting. African elephants declined roughly from 10 million to half a million during the 20th century, due largely to habitat destruction, and intense poaching has since further decimated their numbers. Asian elephants, once in the millions, now number less than 50,000. They are threatened mostly by habitat fragmentation.

The full papers will appear in the December issue of the Journal of Virology.

test1234

hello world

Register to read more...

Mineralization of Sand Particles Boosts Microbial Water Filtration

WASHINGTON, DC – OCTOBER 10, 2014 - Mineral coatings on sand particles actually encourage microbial activity in the rapid sand filters that are used to treat groundwater for drinking, according to a paper published ahead of print in Applied and Environmental Microbiology. These findings resoundingly refute, for the first time, the conventional wisdom that the mineral deposits interfere with microbial colonization of the sand particles.

“We find an overwhelmingly positive effect of mineral deposits on microbial activity and density,” says corresponding author Barth F. Smets, of the Technical University of Denmark, Lyngby.

Mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. Coating certainly changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity and abundance of microbiota

Until now, rapid sand filters have been a bit of a black box, says first author Arda Gülay,one of Smets’ graduate students.

“In rapid sand filters, a combination of chemical, biological, and physical reactions help in the removal and precipitation of the impurities—iron, manganese, ammonia, and methane, for example,” says first author Arda Gülay,one of Smets’ graduate students.  In time, the sand filter grains become coated with minerals, much of which the system managers remove, periodically, via backwashing.

It turns out that the minerals form an abundant matrix around the sand particles, sort of honeycomb-like. “Bacterial cell density in these structures can be very high, and can be boosted further when extra ammonium is provided,” says Smets. The bacteria are normally engaged in removal of ammonium, manganese, and other impurities from the groundwater.

In fact, during the investigation, the ammonium-removal activity increased as the mineral deposits grew. “These positive mineral-microbe interactions suggest protective and supportive roles of the deposits,” says Smets. The investigators also measured a high diversity of ammonium and nitrite-oxidizing species.

The researchers’ direction involved a serendipitous twist. Early on, they discovered an unexpected positive correlation between the number of bacteria, and the degree of mineral coating of the sand particles, says Smets. “This was deemed worthy of further investigation, but we thought it would be a high risk effort. It was not until we saw actual cross sections of the mineral phases, which clearly reveal microbial cell like structures inside the deposits that we became aware of the unique discoveries we were making.”

A major question the research raises is whether the microbes influence the development of the microporosity, or simply take advantage of it, says Gülay. Either way, it could lead ultimately to steering the mineralization to create micro-structures designed to house microbial cells to perform specific functions.

The manuscript can be found online at http://bit.ly/asmtip1014a.  The final version of the article is scheduled for the November 2014 issue of Applied and Environmental Microbiology.

TPL_asm2013_SEARCH