http://www.asm.org/modules/mod_image_show_gk4/cache/mSphere Direct herogk-is-651.pnglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Podcast Hero Banner3gk-is-651.pnglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Microbe Online Program Plannergk-is-651.pnglink
http://www.asm.org/modules/mod_image_show_gk4/cache/AAAS Fellows Bannergk-is-651.jpglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Read New JMBE Bannergk-is-651.jpglink
0 1 2 3 4
Progress bar
22-01-2017mSphere Direct
22-01-2017Podcast banner
22-01-2017AAAS Fellows
22-01-2017Read new JMBE
Become a member today!
JOIN/RENEW
Submit to an ASM Journal
SUBMIT
Attend ASM Biothreats Meeting
REGISTER

csonka laszlo

 

His laboratory studies the responses of cells to high salinity stress. A sudden increase in the external osmolality causes rapid efflux of water from the cells. The ability to adapt to changes in the external osmolality is a fundamental response in cell physiology that is highly conserved across all biological kingdoms. Hisresearch is concentrated on three areas of osmotic regulation. First, the exposure of the food poisoning bacterium Salmonella to moderate or high salinity renders this organism more tolerant of high temperature stress. He is studying the interaction between salinity stress adaptation and high temperature tolerance. This research will provide insights into conditions that increase the efficacy of inactivation of Salmonella in food products by high temperature. He found that proline overproduction confers increased resistance to high salinity stress in Salmonella and other bacteria. The proline-overproducing mutations decreased the sensitivity of g -glutamyl kinase (the first enzyme of proline synthesis) to allosteric inhibition by proline. He is carrying experiments to characterize the enzymological properties and three-dimensional structure the wild type and mutant of g -glutamyl kinases. Better understanding of this enzyme might make it possible to engineer proline overproducing, salt tolerant derivatives of agronomic plants. Finally, he is carrying out physiological and genomic analyses of the bacterium Chromohalobacter salexigens . This bacterium is unusual because it grows optimally in highly saline environments that are lethal to most other organisms. The study of the basis for the exceptional salt stress tolerance of this organism might make it possible to develop it for use in remediation of toxic environments of high salinity.

 

Website: http://www.bio.purdue.edu/people/faculty/index.php?refID=21

TPL_asm2013_SEARCH

91011