http://www.asm.org/modules/mod_image_show_gk4/cache/mSphere Direct herogk-is-651.pnglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Microbe Submit Abstract Slidegk-is-651.jpglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Science Advisor Slidegk-is-651.jpglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Amy Chang Bannergk-is-651.jpglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Governance Hero Bannergk-is-651.jpglink
0 1 2 3 4
Progress bar
08-12-2016mSphere Direct
08-12-2016Science Advisor
08-12-2016Amy Chang
08-12-2016Nominate
Become a member today!
JOIN/RENEW
Submit to an ASM Journal
SUBMIT
Attend ASM Biothreat Meeting
REGISTER

weissman jonathan

 

Dr. Weissman is looking at how cells ensure that proteins fold into their correct shape, as well as the role of protein misfolding in disease and normal physiology. He is also developing experimental and analytical approaches for exploring the organizational principles of biological systems.
To ensure proper folding, cells have evolved a sophisticated and essential machinery of proteins called molecular chaperones that assist the folding of newly made polypeptides. The importance of proper protein folding is underscored by the fact that a number of diseases, including Alzheimer's and those involving infectious proteins (prions), result from protein-misfolding events. My research focuses on identifying and understanding the machinery necessary for efficient folding, as well as studying the mechanism and consequences of protein misfolding. We are also developing experimental and analytical approaches for exploring the organizational principles of complex biological systems.

TPL_asm2013_SEARCH

91075