http://www.asm.org/modules/mod_image_show_gk4/cache/mSphere Direct herogk-is-651.pnglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Podcast Hero Banner3gk-is-651.pnglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Microbe Online Program Plannergk-is-651.pnglink
http://www.asm.org/modules/mod_image_show_gk4/cache/AAAS Fellows Bannergk-is-651.jpglink
http://www.asm.org/modules/mod_image_show_gk4/cache/Read New JMBE Bannergk-is-651.jpglink
0 1 2 3 4
Progress bar
24-01-2017mSphere Direct
24-01-2017Podcast banner
24-01-2017AAAS Fellows
24-01-2017Read new JMBE
Become a member today!
JOIN/RENEW
Submit to an ASM Journal
SUBMIT
Attend ASM Biothreats Meeting
REGISTER

weissman jonathan

 

Dr. Weissman is looking at how cells ensure that proteins fold into their correct shape, as well as the role of protein misfolding in disease and normal physiology. He is also developing experimental and analytical approaches for exploring the organizational principles of biological systems.
To ensure proper folding, cells have evolved a sophisticated and essential machinery of proteins called molecular chaperones that assist the folding of newly made polypeptides. The importance of proper protein folding is underscored by the fact that a number of diseases, including Alzheimer's and those involving infectious proteins (prions), result from protein-misfolding events. My research focuses on identifying and understanding the machinery necessary for efficient folding, as well as studying the mechanism and consequences of protein misfolding. We are also developing experimental and analytical approaches for exploring the organizational principles of complex biological systems.

TPL_asm2013_SEARCH

91075