zika

Funding Alert: Contact Congress for Emergency Funding for Zika

Please contact Congress to urge the immediate passage of a bipartisan emergency supplemental bill for Zika.
Take Action

ASM Acts to Counter Zika Virus Outbreak

The emerging threat of Zika virus infection.
Read

ASM Urges Action to Combat Zika Emergency

Current events linked to the Zika virus make aggressive public health actions and funding to combat this emerging infectious disease more crucial than ever.
Read
New Governance Information
VOTE
Become a member today!
JOIN ASM
Submit Abstracts for ABRCMS
SUBMIT
Register for ABRCMS
REGISTER

kahmann regine

 

The goal of Dr. Kahmann's studies is to elucidate how eukaryotic pathogens, in her case the fungal parasite Ustilago maydis, manage to colonize plants. Dr. Kahmann's laboratory has chosen U. maydis as a model for their investigations as this fungus can cause disease on all above ground parts of the maize plant in short time and is fully amenable  for genetic and reverse genetic analysis. U. maydis causes smut disease, a wide-spread disease associated with the formation of large plant tumors in which the fungus proliferates and differentiates spores.  U. maydis is a biotrophic pathogen that depends on living plant cells to complete its sexual life cycle. Related smut fungi like Ustilago hordei, Ustilago scitaminea and Sporisorium reilianum are important cereal pathogens, but in these systems disease symptoms develop only in the male or female inflorescence. In all smut fungi pathogenic development is initiated by the filamentous dikaryon that is generated by mating of compatible haploid strains. On the leaf surface, the dikaryon forms infection structures which allow direct penetration of the cuticle, presumably aided by lytic enzymes. During penetration the plasma membrane of the host invaginates and surrounds the infection hyphae, shielding the fungus from direct contact with the host cytoplasm. Although hyphae traverse plant cells, there are only limited host defense responses and the infected plant tissue remains alive until late in the infection process when fungal proliferation occurs mostly in the apoplast. The lab has shown that initial plant defense responses, presumably triggered by fungal PAMPs, are  actively  suppressed by U. maydis during colonization.  In recent years they have demonstrated that this is accomplished by secreted protein effector molecules that are mostly novel and exist only in related smut fungi. These secreted effector proteins  either have a function in the tight interaction zone between fungal hyphae and host plasma membrane or are translocated to host cells. Effectors taken up by plant cells are involved in reprogramming  the metabolism of the host to prepare  it for fungal invasion.  Their current work is focused on the early phase of fungal development on the leaf surface, and here they are particularly interested to elucidate how the leaf surface is sensed and how these cues trigger fungal differentiation. The second focus of the lab's work concerns the elucidation how and where secreted effectors function and how they shape the biotrophic interaction. Here they heavily rely on comparative genomics, reverse genetics and a combination of  biochemical, molecular and cell biological approaches.

 

For more information, please visit: http://www.mpi-marburg.mpg.de/kahmann/research.html

TPL_asm2013_SEARCH

91236