Contents

Preface xvii
Acknowledgements xxi
About the Authors xxiii

1 Infections of Populations: History and Epidemiology 2

Introduction to Viral Pathogenesis 3
A Brief History of Viral Pathogenesis 4
The Relationships between Microbes and the Diseases They Cause 4
The First Human Viruses Identified and the Role of Serendipity 4
New Techniques Led to the Study of Viruses as Causes of Disease 7

Viral Epidemics in History 8
Epidemics Shaped History: the 1793 Yellow Fever Epidemic in Philadelphia 8
Tracking Epidemics by Sequencing: West Nile Virus Spread to the Western Hemisphere 9
The Economic Toll of Viral Epidemics in Agricultural Organisms 9
Population Density and World Travel as Accelerators of Viral Transmission 10
Zoonotic Infections and Viral Epidemics 10

Epidemiology 10
Fundamental Concepts 11
Tools of Epidemiology 13
Surveillance 15

Parameters That Govern the Ability of a Virus To Infect a Population 16
Environment 16
Host Factors 19

Perspectives 22

References 23
## Barriers to Infection 24

### Introduction 25

**An Overview of Infection and Immunity** 25

A Game of Chess Played by Age-Old Masters 25

Initiating an Infection 27

**Successful Infections Must Modulate or Bypass Host Defenses** 29

Skin 29

Respiratory Tract 31

Alimentary Tract 33

Urogenital Tract 35

Eyes 35

**Viral Tropism** 36

Accessibility of Viral Receptors 36

Host Cell Proteins That Regulate the Infectious Cycle 36

**Spread throughout the Host** 39

Hematogenous Spread 40

Neural Spread 42

**Organ Invasion** 45

Entry into Organs with Sinusoids 45

Entry into Organs That Lack Sinusoids 46

Organs with Dense Basement Membranes 46

Skin 47

The Fetus 47

**Shedding of Virus Particles** 47

Respiratory Secretions 48

Saliva 48

Feces 49

Blood 49

Urine 49

Semen 49

Milk 49

Skin Lesions 49

**Perspectives** 50

**References** 50

## The Early Host Response: Cell-Autonomous and Innate Immunity 52

### Introduction 53

**The First Critical Moments of Infection:** How Do Individual Cells Detect a Virus Infection? 54

Cell Signaling Induced by Receptor Engagement 55

Receptor-Mediated Recognition of Microbe-Associated Molecular Patterns 55

Cellular Changes That Occur Following Viral Infection 60
### Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic Responses to Infection</td>
<td>62</td>
</tr>
<tr>
<td>Apoptosis (Programmed Cell Death)</td>
<td>62</td>
</tr>
<tr>
<td>Other Intrinsic Immune Defenses</td>
<td>67</td>
</tr>
<tr>
<td>The Continuum between Intrinsic and Innate Immunity</td>
<td>74</td>
</tr>
<tr>
<td>Soluble Immune Mediators of the Innate Immune Response</td>
<td>74</td>
</tr>
<tr>
<td>Overview of Cytokine Functions</td>
<td>74</td>
</tr>
<tr>
<td>Interferons, Cytokines of Early Warning and Action</td>
<td>76</td>
</tr>
<tr>
<td>Chemokines</td>
<td>86</td>
</tr>
<tr>
<td>The Innate Immune Response</td>
<td>87</td>
</tr>
<tr>
<td>Complement</td>
<td>87</td>
</tr>
<tr>
<td>Natural Killer Cells</td>
<td>90</td>
</tr>
<tr>
<td>Other Innate Immune Cells of Relevance to Viral Infections</td>
<td>92</td>
</tr>
<tr>
<td>Perspectives</td>
<td>93</td>
</tr>
<tr>
<td>References</td>
<td>94</td>
</tr>
</tbody>
</table>

### 4 Adaptive Immunity and the Establishment of Memory 98

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>99</td>
</tr>
<tr>
<td>Attributes of the Host Response</td>
<td>99</td>
</tr>
<tr>
<td>Speed</td>
<td>99</td>
</tr>
<tr>
<td>Diversity and Specificity</td>
<td>100</td>
</tr>
<tr>
<td>Memory</td>
<td>100</td>
</tr>
<tr>
<td>Self-Control</td>
<td>100</td>
</tr>
<tr>
<td>Lymphocyte Development, Diversity, and Activation</td>
<td>100</td>
</tr>
<tr>
<td>All Blood Cells Derive from a Common Hematopoietic Stem Cell</td>
<td>100</td>
</tr>
<tr>
<td>The Two Arms of Adaptive Immunity</td>
<td>101</td>
</tr>
<tr>
<td>The Major Effectors of the Adaptive Response: B Cells and T Cells</td>
<td>101</td>
</tr>
<tr>
<td>Diverse Receptors Impart Antigen Specificity to B and T Cells</td>
<td>107</td>
</tr>
<tr>
<td>Events at the Site of Infection Set the Stage for the Adaptive Response</td>
<td>108</td>
</tr>
<tr>
<td>Acquisition of Viral Proteins by Professional Antigen-Presenting Cells</td>
<td>108</td>
</tr>
<tr>
<td>Enables Production of Proinflammatory Cytokines and Establishment of Inflammation</td>
<td>108</td>
</tr>
<tr>
<td>Antigen-Presenting Cells Leave the Site of Infection and Migrate to Lymph Nodes</td>
<td>111</td>
</tr>
<tr>
<td>Antigen Processing and Presentation</td>
<td>114</td>
</tr>
<tr>
<td>Professional Antigen-Presenting Cells Induce Activation via Costimulation</td>
<td>114</td>
</tr>
<tr>
<td>Presentation of Antigens by Class I and Class II MHC Proteins</td>
<td>115</td>
</tr>
<tr>
<td>Lymphocyte Activation Triggers Massive Cell Proliferation</td>
<td>119</td>
</tr>
<tr>
<td>The Cell-Mediated Response</td>
<td>119</td>
</tr>
<tr>
<td>CTLs Lyse Virus-Infected Cells</td>
<td>119</td>
</tr>
<tr>
<td>Control of CTL Proliferation</td>
<td>122</td>
</tr>
<tr>
<td>Noncytolytic Control of Infection by T Cells</td>
<td>122</td>
</tr>
<tr>
<td>Rashes and Poxes</td>
<td>122</td>
</tr>
</tbody>
</table>
5 Mechanisms of Pathogenesis 134

Introduction 135

Animal Models of Human Diseases 135

Patterns of Infection 136
  Incubation Periods 137
  Mathematics of Growth Correlate with Patterns of Infection 138
  Acute Infections 139
  Persistent Infections 143
  Latent Infections 150
  “Slow” Infections 157
  Abortive Infections 157
  Transforming Infections 157

Viral Virulence 158
  Measuring Viral Virulence 158
  Alteration of Viral Virulence 159
  Viral Virulence Genes 160

Pathogenesis 164
  Infected Cell Lysis 164
  Immunopathology 164
  Immunosuppression Induced by Viral Infection 168
  Oncogenesis 169
  Molecular Mimicry 170

Perspectives 172
References 172

6 Cellular Transformation and Oncogenesis 174

Introduction 175
  Properties of Transformed Cells 175
  Control of Cell Proliferation 178

Oncogenic Viruses 182
  Discovery of Oncogenic Viruses 182
  Viral Genetic Information in Transformed Cells 187
  The Origin and Nature of Viral Transforming Genes 189
  Functions of Viral Transforming Proteins 192
Activation of Cellular Signal Transduction Pathways by Viral Transforming Proteins 192
  Viral Signaling Molecules Acquired from the Cell 192
  Alteration of the Production or Activity of Cellular Signal Transduction Proteins 195

Disruption of Cell Cycle Control Pathways by Viral Transforming Proteins 201
  Abrogation of Restriction Point Control Exerted by the Rb Protein 201
  Production of Virus-Specific Cyclins 204
  Inactivation of Cyclin-Dependent Kinase Inhibitors 204

Transformed Cells Must Grow and Survive 206
  Mechanisms That Permit Survival of Transformed Cells 206

Tumorigenesis Requires Additional Changes in the Properties of Transformed Cells 209
  Inhibition of Immune Defenses 210

Other Mechanisms of Transformation and Oncogenesis by Human Tumor Viruses 210
  Nontransducing Oncogenic Retroviruses: Tumorigenesis with Very Long Latency 210
  Oncogenesis by Hepatitis Viruses 213

Perspectives 214
References 214

Human Immunodeficiency Virus Pathogenesis 218

Introduction 219
  Worldwide Impact of AIDS 219

HIV is a Lentivirus 219
  Discovery and Characterization 219
  Distinctive Features of the HIV Reproduction Cycle and the Functions of Auxiliary Proteins 222
  The Viral Capsid Counters Intrinsic Defense Mechanisms 230

Cellular Targets 230

Routes of Transmission 231
  Modes of Transmission 231
  Mechanics of Spread 233

The Course of Infection 234
  The Acute Phase 234
  The Asymptomatic Phase 235
  The Symptomatic Phase and AIDS 236
  Variability of Response to Infection 236

Origins of Cellular Immune Dysfunction 237
  CD4+ T Lymphocytes 237
  Cytotoxic T Lymphocytes 238
9 Antiviral Drugs 282

Introduction 283
- Historical Perspective 283

Discovering Antiviral Compounds 284
- The Lexicon of Antiviral Discovery 284
- Screening for Antiviral Compounds 285
- Computational Approaches to Drug Discovery 287
- The Difference between “R” and “D” 288

Examples of Some Antiviral Drugs 293
- Approved Inhibitors of Viral Nucleic Acid Synthesis 293
- Approved Drugs That Are Not Inhibitors of Nucleic Acid Synthesis 298

Expanding Target Options for Antiviral Drug Development 300
- Entry and Uncoating Inhibitors 300
- Viral Regulatory Proteins 300
- Regulatory RNA Molecules 300
- Proteases and Nucleic Acid Synthesis and Processing Enzymes 301

Two Success Stories: Human Immunodeficiency and Hepatitis C Viruses 301
- Inhibitors of Human Immunodeficiency Virus and Hepatitis C Virus Polymerases 303
- Human Immunodeficiency Virus and Hepatitis C Virus Protease Inhibitors 306
- Human Immunodeficiency Virus Integrase Inhibitors 306
- Hepatitis C Virus Multifunctional Protein NS5A 308
- Inhibitors of Human Immunodeficiency Virus Fusion and Entry 309

Drug Resistance 309
- Combination Therapy 310
- Challenges Remaining 312

Perspectives 312

References 314

10 Evolution 316

Virus Evolution 317

Classic Theory of Host-Parasite Interactions 317
How Do Virus Populations Evolve? 318

Two General Survival Strategies Can Be Distinguished 319
Large Numbers of Viral Progeny and Mutants Are Produced in Infected Cells 319
The Quasispecies Concept 321
Sequence Conservation in Changing Genomes 321
Genetic Shift and Genetic Drift 324
Fundamental Properties of Viruses That Constrain and Drive Evolution 326

The Origin of Viruses 327

Host-Virus Relationships Drive Evolution 333
DNA Virus Relationships 333
RNA Virus Relationships 333
The Protovirus Hypothesis for Retroviruses 335

Lessons from Paleovirology 335
Endogenous Retroviruses 336
DNA Fossils Derived from Other RNA Viral Genomes 337
Endogenous Sequences from DNA Viruses 337
The Host-Virus “Arms Race” 337

Perspectives 339
References 340

Emergence 342

The Spectrum of Host-Virus Interactions 343
Stable Interactions 344
The Evolving Host-Virus Interaction 345
The Dead-End Interaction 345
Common Sources of Animal-to-Human Transmission 347
The Resistant Host 348

Encountering New Hosts: Ecological Parameters 348
Successful Encounters Require Access to Susceptible and Permissive Cells 349
Population Density, Age, and Health Are Important Factors 350
Experimental Analysis of Host-Virus Interactions 350
Learning from Accidental Infections 351

Expanding Viral Niches: Some Well-Documented Examples 351
Poliomyelitis: Unexpected Consequences of Modern Sanitation 351
Smallpox and Measles: Exploration and Colonization 352

Notable Zoonoses 352
Hantavirus Pulmonary Syndrome: Changing Climate and Animal Populations 352
Severe Acute and Middle East Respiratory Syndromes (SARS and MERS): Two
New Zoonotic Coronavirus Infections 352
Acquired Immunodeficiency Syndrome (AIDS): Pandemic from a Zoonotic
Infection 353

Host Range Can Be Expanded by Mutation, Recombination, or Reassortment 354
Canine Parvoviruses: Cat-to-Dog Host Range Change by Two Mutations 354
Influenza Epidemics and Pandemics: Escaping the Immune Response by
Reassortment 354
New Technologies Uncover Hitherto Unrecognized Viruses 355
  Hepatitis Viruses in the Human Blood Supply 357
A Revolution in Virus Discovery 357
Perceptions and Possibilities 358
  Virus Names Can Be Misleading 359
  All Viruses Are Important 359
What Next? 359
  Can We Predict the Next Viral Pandemic? 359
  Emerging Viral Infections Illuminate Immediate Problems and Issues 360
  Humans Constantly Provide New Venues for Infection 360
  Preventing Emerging Virus Infections 361
Perspectives 361
References 362

12 Unusual Infectious Agents 364
Introduction 365
Viroids 365
  Replication 365
  Sequence Diversity 366
  Movement 366
  Pathogenesis 368
Satellites 368
  Replication 369
  Pathogenesis 369
  Virophages or Satellites? 369
  Hepatitis Delta Satellite Virus 370
Prions and Transmissible Spongiform Encephalopathies 371
  Scrapie 371
  Physical Nature of the Scrapie Agent 371
  Human TSEs 371
  Hallmarks of TSE Pathogenesis 372
  Prions and the prnp Gene 372
  Prion Strains 374
  Bovine Spongiform Encephalopathy 374
  Chronic Wasting Disease 376
  Treatment of Prion Diseases 377
Perspectives 377
References 378

Appendix Diseases, Epidemiology, and Disease Mechanisms of Selected Animal Viruses Discussed in This Book 379
Glossary 407
Index 413