Environmental Microbiology, Ecology, & Evolution

Friday, 10 February 2017 11:30

FAQ: Microbes and Climate Change, April 2017

Microbes and Climate Change Report CoverMicroorganisms have been changing the climate, and have been changed by the climate, throughout Earth’s history. Microorganisms respond, adapt, and evolve in their surroundings at higher rates than most other organisms, allowing scientists to study the effects of climate change on microbes to understand and hopefully predict the future effects of climate change on all forms of life. Although scientists have been studying microbial ecosystems for many years, there remains much more to learn and understand about complex microbial functions and their interactions with climate change. The American Academy of Microbiology and American Geophysical Union convened a colloquium on March 3, 2016, bringing together experts from many scientific disciplines to discuss the current understanding of microbes and our changing climate, as well as gaps and priorities for future study.

Published in Colloquium Reports

Built-Report Cover-resize

Built environments are the structures that humans create to shelter from the outdoors and provide spaces for living, working, playing, and getting places. Along with humans, pets, pests, and house plants, built environments house a range of microbes. Preliminary studies indicate that indoor spaces have distinct microbial communities, influenced by building materials, ventilation and airflow, moisture, and human and animal activity. The Academy convened a colloquium on September 9, 2015 to examine the role of complex microbial ecosystems found in built environments, including their effects on building chemistry and human health. Studying the microbiology of built environments can change the ways we design, build, operate, occupy, and clean our indoor spaces.

Published in Colloquium Reports

Feed the World"How Microbes can Help Feed the World" looks in depth at the intimate relationship between microbes and agriculture including why plants need microbes, what types of microbes they need, how they interact and the scientific challenges posed by the current state of knowledge.  It then makes a series of recommendations, including greater investment in research, the taking on of one or more grand challenges such as characterization of the complete microbiome of one important crop plant, and the establishment of a formal process for moving scientific discoveries from the lab to the field.

Published in Colloquium Reports

VirusesThroughoutLife

 In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to Viruses Throughout Life & Time: Friends, Foes, Change AgentsViruses Throughout Life & Time: Friends, Foes, Change Agents is based on the deliberation of a group of scientific experts who gathered for two days in San Francisco, CA in July 2013 to answer a series of questions regarding the variety of roles that viruses play in the natural world.

Published in Colloquium Reports
Friday, 03 January 2014 12:21

FAQ: Human Microbiome, January 2014

FAQMicrobiomeThe human microbiome, the collection of trillions of microbes living in and on the human body, is not random, and scientists believe that it plays a role in many basic life processes.  As science continues to explore and better understand the identities and activities of the microbial species comprising the human microbiome, microbiologists hope to draw connections between microbiome composition, host genetics, and human health. FAQ: Human Microbiome addresses this growing area of research.

Published in Colloquium Reports
Thursday, 12 December 2013 12:21

FAQ: West Nile Virus, 2013

west nile Where does the virus come from? How is it spread? Can we predict when and where outbreaks will occur? What factors determine how sick a person will become if they are infected with West Nile virus?

To help answer the many questions people have about this multi-faceted virus, the American Academy of Microbiology has issued a new report entitled FAQ: West Nile Virus. The Academy convened twenty-two of the world’s leading experts on West Nile virus in March, 2013 to consider and answer some of the most frequently asked questions about West Nile virus. The resultant report provides non-technical, science-based answers to questions that people may have about the virus.

Published in Colloquium Reports
Monday, 01 July 2013 13:21

FAQ: Influenza, 2013

Flu Where do new influenza viruses come from? How are they different from the influenza viruses that circulate every year? Why is vaccination so important? To help answer the many questions people have about this multi-faceted virus, the American Academy of Microbiology has issued a new report entitled FAQ: Influenza. The Academy convened twelve of the world’s leading experts on influenza in October, 2012 to consider and answer some of the most frequently asked questions about influenza. The resultant report provides non-technical, science-based answers to questions that people may have about the virus.

Published in Colloquium Reports

MovingTargetsConcerned about antibiotic resistance? What if an insect pest becomes desensitized to the protective chemicals applied to crops? All kinds of living organisms have evolved mechanisms of resistance against the chemicals designed to control them – from bacteria, viruses, cancer cells to weeds. In the Academy of Microbiology’s newest, free report, explore the Darwinian principles underlying the evolution of resistance in these different biological communities and learn how experts in these fields have developed potentially discipline-spanning strategies of combatting them.

Published in Colloquium Reports

mipNon-microbiologists may assume that the goal of water utilities should be the elimination of all microbes from our drinking water. But the water we drink has never been sterile; perfectly safe water contains millions of non-pathogenic microbes in every glassful. Like every other human built environment, the entire water distribution system — every reservoir, every well, every pipe, and every faucet — is home to hundreds or thousands of species of bacteria, algae, invertebrates, and viruses, most of which are completely harmless to humans. In April, 2012, the American Academy of Microbiology convened a colloquium to assess what is known about the microbial inhabitants of the water distribution system and to propose goals for advancing our understanding of these communities in order to enhance the safety of our drinking water and the resilience of our water infrastructure.

Published in Colloquium Reports

Microbes are critical players in every geochemical cycle relevant to climate including carbon, nitrogen, sulfur, and others. The sum total of microbial activity is enormous, but the net effect of microbial activities on the concentration of carbon dioxide and other climate-relevant gases is currently not known. In February of 2011, the American Academy of Microbiology convened a colloquium to discuss how to integrate microbiological processes and climate models. Based on that colloquium, this report examines our current understanding of how microbes influence climate and identifies key biogeochemical processes, heavily influenced by microbes, which offer attractive starting points to begin collaborations between the two fields. The report also recommends changes to data collection and accessibility, improved incentives for interdisciplinary collaborations, and the development of new technologies as important steps. While the challenge of integrating microbes into climate models is great, one thing is certain, microbes are a force in climate change that cannot be ignored.

Published in Colloquium Reports
Page 1 of 3

TPL_asm2013_ADDITIONAL_INFORMATION

TPL_asm2013_SEARCH