AMR Sept Banner v2

ASM Attends UN General Assembly

ASM President, Susan Sharp, Ph.D., joined global leaders at the United Nations General Assembly in New York today in a historical meeting to focus on the commitment to fight AMR.
Read

UN General Assembly Focuses on AMR

Leaders at the UN General Assembly draft a plan for coordinated, cross-cutting efforts to improve the current state of AMR.
Read

Superbugs are a 'Fundamental Threat'

If antibiotics were telephones, we would still be calling each other using clunky rotary dials and copper lines," Stefano Bertuzzi, CEO of ASM, told NBC News.
Read
Become a member today!
JOIN ASM
Submit Abstracts for Biothreats 2017
SUBMIT
Antibacterial Development Conference
REGISTER

eltis lindsayMicroorganisms have evolved an astoundingly versatile armamentarium of catabolic enzymes and pathways to degrade the vast array of organic compounds that occur in the environment. These catabolic activities constitute an essential link in the global carbon cycle, and as such are critical to maintaining the health of the biosphere. In addition to their fundamental importance, microbial catabolic enzymes are of tremendous practical importance. First, they represent an enormous, barely tapped source of biocatalysts for green chemistry and bioremediation applications. Second, such enzymes can be important targets for novel therapeutics to treat infectious diseases.

Research in the Eltis lab seeks to understand microbial enzymes and pathways involved in the degradation of natural and man-made compounds. We currently study the following systems:

Biocatalytic applications:

  • PCB- and biphenyl-degrading enzymes
  • Nitrile degradation in Rhodococcus
  • The degradation of explosives by actinomycetes

Human health applications:

  • Cholesterol catabolic enzymes of Mycobacterium tuberculosis.
  • Viral 3C proteases

TPL_asm2013_SEARCH

91098